Skip to main content
Log in

Optimization of catalytic activity of sulfated titania for efficient synthesis of isoamyl acetate by response surface methodology

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

TiO2 nanoparticles were synthesized by sol–gel method using titanium tetraisopropoxide. Sulfate ions were introduced on the titania by impregnation method using sulfuric acid as precursor of sulfate ions. Fourier transform infrared and energy-dispersive X-ray spectroscopy, X-ray fluorescence as well as X-ray diffraction, scanning electron microscopy, and BET methods were used for the characterization of the obtained nanoparticles. The esterification of isoamyl alcohol with acetic acid was investigated to prove the catalytic activity of the TiO2 nanoparticles under solvent-free conditions. Response surface methodology was applied to optimize the effect of some parameters such as the molar ratio of acetic acid to alcohol, catalyst loading, reaction temperature, and reaction time on the yield of the isoamyl acetate. The TiO2 nanoparticles were proved to be an excellent heterogeneous catalyst for isoamyl acetate synthesis under solvent-free conditions affording a high yield of 94 % under the following optimal conditions: molar ratio of acetic acid to alcohol (1:7), catalyst loading (3.2 wt% with respect to the acetic acid), the reaction temperature (130 °C), and the reaction time (300 min).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ropero-Vega JL, Aldana-Perez A, Gomez R, Nino-Gomez ME (2010) Appl Catal A 379:24

    Article  CAS  Google Scholar 

  2. Guvenc A, Kapucu N, Kapucu H, Aydogan O, Mehmetglu U (2007) Enzyme Microb Technol 40:778

    Article  Google Scholar 

  3. Marchetti JM, Errazu AF (2008) Biomass Bioenerg 32:892

    Article  CAS  Google Scholar 

  4. Casas A, Ramos MJ, Rodríguez JF, Pérez Á (2013) Fuel Process Technol 106:321

    Article  CAS  Google Scholar 

  5. Li KT, Wang CK, Wang I, Wang CM (2011) Appl Catal A 392:180

    Article  CAS  Google Scholar 

  6. Koo HM, Lee JH, Chang TS, Suh YW, Lee DH, Bae JW (2014) React Kinet Mech Catal 112:499

    Article  CAS  Google Scholar 

  7. Alizadeh MH, Kermani T, Tayebee R (2007) Monatsh Chem 138:165

    Article  CAS  Google Scholar 

  8. Hajra B, Pathak AK, Guria C (2014) Int J Ind Chem 5:95

    Article  Google Scholar 

  9. Mitran G, Pavel OD (2015) React Kinet Mech Catal 114:197

    Article  CAS  Google Scholar 

  10. Mitran G, Yuzhakova T, Popescu I, Marcu IC (2015) J Mol Catal A 396:275

    Article  CAS  Google Scholar 

  11. Zhao H, Jiang P, Dong Y, Huang M, Liu B (2014) React Kinet Mech Catal 113:445

    Article  CAS  Google Scholar 

  12. Dai X, Wu C (2013) Adv Mater Res 634:632

    Article  Google Scholar 

  13. Safary E (2011) J Sulfur Chem 32:463

    Article  Google Scholar 

  14. Shi W (2013) Catal Lett 143:732

    Article  CAS  Google Scholar 

  15. Hosseini-Sarvari M, Sodagar E (2013) C R Chim 16:229

    Article  CAS  Google Scholar 

  16. Sunajadevi KR, Sugunan S (2005) Catal Lett 99:263

    Article  CAS  Google Scholar 

  17. Lu Q, Xiong WM, Li WZ, Guo QX, Zhu XF (2009) Bioresour Technol 100:4871

    Article  CAS  Google Scholar 

  18. Teo HTR, Saha B (2004) J Catal 228:174

    Article  CAS  Google Scholar 

  19. Pizzio L, Vázquez P, Cáceres C, Blanco M (2001) Catal Lett 77:233

    Article  CAS  Google Scholar 

  20. Liu CS, Luo GX (2004) China Surfact Det Cosmet 34:403

    Google Scholar 

  21. Azudin NY, Mashitah MD, Abd-Shukor SR (2013) J Food Qual 36:441

    Article  CAS  Google Scholar 

  22. Bezerra MA, Santelli RA, Oliveira EP, Villar LS, Escaleira LA (2008) Talanta 76:965

    Article  CAS  Google Scholar 

  23. Zhang DH, Bai S, Dong XY, Sun Y (2007) J Agric Food Chem 55:4526

    Article  CAS  Google Scholar 

  24. Soo EL, Salleh AB, Basri M, Rahman RNZA, Kamaruddin K (2004) Process Biochem 39:1511

    Article  CAS  Google Scholar 

  25. Yan M, Chen F, Zhang J, Anpo M (2005) J Phys Chem B 109:8673

    Article  CAS  Google Scholar 

  26. Lin J, Lin Y, Liu P, Meziani MJ, Allard LF, Sun Y (2002) J Am Chem Soc 124:11514

    Article  CAS  Google Scholar 

  27. Iwuchukwu IJ, Iwuchukwu E, Le R, Paquet C, Sawhney R, Bruce B, Frymier P (2011) Int J Hydrogen Energy 36:11684

    Article  CAS  Google Scholar 

  28. Cam M, Aaby K (2010) J Agric Food Chem 58:9103

    Article  CAS  Google Scholar 

  29. Kutner MH, Nachtsheim CJ, Neter J (1996) Applied linear regression models, 4th edn. McGraw-Hill/Irwin, New York

    Google Scholar 

  30. Noda LK, Almeida RMD, Probst LFD, Gonçalves NS (2005) J Mol Catal A 225:39

    Article  CAS  Google Scholar 

  31. Hu C, Tang Y, Jiang Z, Hao Z, Tang H, Wong PK (2003) Appl Catal A 253:389

    Article  CAS  Google Scholar 

  32. Heravi MJ, Parastar H, Najafabadi HE (2009) J Chromatogr A 1216:6088

    Article  Google Scholar 

  33. Furnis BS, Hannaford AJ, Rogers V, Smith PWG, Tatohal AR (1987) Text book of practical organic chemistry including qualitative organic analysis, 4th edn. Longman, New York

    Google Scholar 

  34. Das R, Sarkar S, Bhattacharjee C (2014) J Water Process Eng 2:79

    Article  Google Scholar 

  35. Nandiwale KY, Galande ND, Bokade VV (2015) RSC Adv 5:17109

    Article  CAS  Google Scholar 

  36. Tan KT, Lee KT, Mohamed ARA (2010) Bioresour Technol 101:965

    Article  CAS  Google Scholar 

  37. Montgomery DC (2012) Design and analysis of experiments, 8th edn. John Wiley and Sons, New York

    Google Scholar 

  38. Pang XY, Lv P, Yang YS, Ren HL, Gong F (2008) E J Chem 5:149

    Article  Google Scholar 

  39. Nagaraju N, Peeran M, Prasad D (1997) React Kinet Catal Lett 61:155

    Article  CAS  Google Scholar 

  40. Yang Z, Zhou C, Zhang W, Li H, Chen M (2010) Colloids Surf A 365:134

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Research Council of Iran University of Science and Technology (IUST), Tehran, Iran. Furthermore, we are thankful to Dr. R. Zare Dorabei for useful discussions concerning RSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad G. Dekamin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshar, S., Sadehvand, M., Azad, A. et al. Optimization of catalytic activity of sulfated titania for efficient synthesis of isoamyl acetate by response surface methodology. Monatsh Chem 146, 1949–1957 (2015). https://doi.org/10.1007/s00706-015-1533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1533-5

Keywords

Navigation